module Biocaml_roc:Performance measurement for binary classification.sig..end
    This module provides functions to compute various performance
    measurement for binary classification. Typically, binary
    classifiers output both a label and a score indicating a
    confidence level. A ROC curve represents the variation of
    sensitivity and specificity of the classifier as a function of a
    score threshold.
type |    | tp :  | 
|    | tn :  | 
|    | fp :  | 
|    | fn :  | 
val make : pos:float Batteries.Enum.t ->
       neg:float Batteries.Enum.t ->
       (float * confusion_matrix) Batteries.Enum.tpos (resp. neg) of scores from positive (resp. negative) instances, make ~pos ~neg 
    builds an enum of confusion matrices by setting an decreasing acceptance threshold. The result has at 
    least one first value, which is the confusion matrix for an infinity threshold. The subsequent
    thresholds are the values in pos and neg.val sensitivity : confusion_matrix -> floatval false_positive_rate : confusion_matrix -> floatval accuracy : confusion_matrix -> floatval specificity : confusion_matrix -> floatval positive_predictive_value : confusion_matrix -> floatval negative_predictive_value : confusion_matrix -> floatval false_discovery_rate : confusion_matrix -> floatval f1_score : confusion_matrix -> floatval auc : (float * float) Batteries.Enum.t -> floatauc e computes the area above the X-axis and under the piecewise linear curve 
    passing through the points in e. Assumes that the points come with increasing 
    x-coordinate.